16 research outputs found

    Human motion analysis and measurement techniques: current application and developing trend

    Get PDF
    Human motion analysis and measurement technology have been widely used in the fields of medical treatment, sports science, and rehabilitation. In clinical practice, motion analysis has been applied in the diagnosis and individualized treatment planning of various musculoskeletal diseases, and it is also an important objective scientific method to evaluate the therapeutic effect and the effectiveness of medical equipment. This study aimed to introduce the common modern motion capture measurement technology and equipment, the clinical application and limitations of motion analysis, and the possible development trend of motion analysis measuring techniques in the future. Motion analysis and measurement systems and medical image measurement and analysis technology have made landmark improvements over the past few decades in terms of orthopaedical biomechanics. Nevertheless, limitations still exist, both subjective and objective. All these drawbacks have promoted the exploration of the integrated methods that have now been widely used in motion analysis. The results of the case study about the subject-specific finite element modeling of the foot and sports shoe complex have also shown great consistency. Nevertheless, several possible future directions for motion analysis measuring techniques still exist. In the future, the progress of motion analysis and measurement methods will simultaneously drive the progress of orthopedics, rehabilitation, precision personalized medicine, and medical engineering

    Arch-Support Induced Changes in Foot-Ankle Coordination in Young Males with Flatfoot during Unplanned Gait Termination

    No full text
    Objective: The efficacy of arch orthoses in posture adjustment and joint coordination improvement during steady-state gait is well documented; however, the biomechanical changes of gait sub-tasks caused by arch support (AS), especially during gait termination, are poorly understood. Hence, this study aimed to investigate how the acute arch-supporting intervention affects foot–ankle coordination and coordination variability (CV) in individuals with flatfoot during unplanned gait termination (UGT). Methods: Twenty-five male patients with flatfoot were selected as subjects participated in this AS manipulation study. A motion capture system was used for the collection of the metatarsophalangeal joint (MPJ) and ankle kinematics during UGT. MPJ-Ankle coordination and CV were quantified using an optimized vector coding technique during the three sub-phases of UGT. A paired-sample t-test from the one-dimensional statistical parametric mapping of one-dimensional was applied to examine the data significance. Results: Significant differences for the joint kinematics between non-arch-support (NAS) and AS were exhibited only in the MPJ transverse plane during the middle and later periods of UGT (p = 0.04–0.026). Frontal plane MPJ-ankle coordination under AS during stimulus delay significantly decreased from 177.16 ± 27.41° to 157.75 ± 32.54° compared with under NAS (p = 0.026); however, the coordination pattern had not changed. Moreover, no significant difference was found in the coupling angle variability between NAS and AS in three planes during sub-phases of UGT (all p > 0.5). Conclusions: The detailed intrinsic characteristic of AS induced acute changes in lower extremity segment coordination in patients with mild flatfoot has been recorded. This dataset on foot-ankle coordination characteristics during UGT is essential for explaining foot function and injury prediction concerning AS manipulation. Further studies are expected to reflect lower limb inter-joint coordination during gait termination through the long-term effects of AS orthoses

    Do different muscle strength levels affect stability during unplanned gait termination?

    No full text
    Unplanned gait termination (UGT) widely occurs in various sports and daily life as a kind of stress response to unexpected stimulus. However, the body stability may be greatly affected when the body completely stops. The purpose of this study was to examine the association between muscle strength levels and body stability during UGT through comparing the plantar pressure. Methods: Twenty healthy participants (10 male and 10 female) with different lower limbs muscle strength and power were asked to perform planned gait termination (PGT) and unplanned gait termination (UGT) on an 8-m walkway. Related plantar pressure data including maximum pressure, maximum force, contact area and center of pressure were recorded with Footscan pressure platform. Results: Two types of gait termination have significant differences in the plantar pressure distribution. Maximum pressure and maximum force in the lateral metatarsal increased significantly during UGT, compared to PGT. At the same time, data from the current study suggested that there might be a correlation between the muscle strength levels of individual and the stability during the gait termination, especially between the muscle power and UGT, which means that the more excellent muscle power an individual has, the more stable the body is when UGT is performed. Conclusions: The findings suggest that different muscle strength levels could affect stability during unplanned gait termination

    Association of Arch Stiffness with Plantar Impulse Distribution during Walking, Running, and Gait Termination

    No full text
    The purpose of this study was to determine relationships between arch stiffness and relative regional impulse during walking, running, and stopping. A total of 61 asymptomatic male subjects volunteered to participate in the study. All were classified by calculating the arch stiffness index using 3-dimensional foot morphological scanning. Plantar pressure distribution data were collected from participants using a Footscan pressure platform during gait tests that included walking, running, and gait termination. The stiff arches group (n = 19) and flexible arches group (n = 17) were included in the following data analysis. The results suggested that subjects with stiffer arches had a larger and smaller percentage of plantar impulse in the forefoot and rearfoot, respectively, than subjects with more flexible arches during walking and running. However, during gait termination, which included planned and unplanned gait stopping, the plantar impulse distribution pattern was found to be reversed. The current findings demonstrate that the distributional changes of plantar loading follow unidirectional transfer between the forefoot and the rearfoot on the plantar longitudinal axis. Moreover, the patterns of impulse distribution are also different based on different gait task mechanisms

    A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses

    No full text
    Although values of arch stiffness index (ASI) have been used to evaluate arch structure and injury susceptibility, investigations are limited regarding the influence of ASI on biomechanical characteristics during gait termination, which involves a challenging balance transition from walking to standing. This study aimed to explore plantar pressure distribution and lower extremity joint kinematic differences between individuals with both a stiff and flexible arch (SA and FA, respectively) during planned and unplanned gait termination (PGT and UGT, respectively). Following the calculation of ASI, sixty-five asymptomatic male subjects were classified and participated in two types of gait termination tests to acquire kinematic and plantar pressure data. Parameters were compared between SA and FA using a two-way ANOVA during PGT and UGT, respectively. UGT was found to have a larger range of motion on the hip joint in the sagittal plane and the knee joint in the transverse plane when compared with PGT. The differences in the kinematic characteristics of the lower limb joints caused by the difference in arch stiffness are mainly concentrated in the ankle and metatarsophalangeal joints. Plantar pressure data, represented by the maximum pressure, showed significant differences in the forefoot and rearfoot areas. These results suggest that ASI could change freedom of motion of the lower limb joints, and UGT tends to conduct a compensatory adjustment for the lower extremity kinetic chain. An understanding of the biomechanical characteristics of arch structures may provide additional insights into foot function and injury prediction during gait termination

    Development and Validation of a Subject-Specific Coupled Model for Foot and Sports Shoe Complex: A Pilot Computational Study

    No full text
    Nowadays, footwear serves an essential role in improving athletic performance and decreasing the risk of unexpected injuries in sports games. Finite element (FE) modeling is a powerful tool to reveal the biomechanical interactions between foot and footwear, and establishing a coupled foot-shoe model is the prerequisite. The purpose of this pilot study was to develop and validate a 3D FE coupled model of the foot and sports shoe complex during balanced standing. All major foot and shoe structures were constructed based on the participant鈥檚 medical CT images, and 3D gait analysis was conducted to define the loading and boundary conditions. Sensitivity analysis was applied to determine the optimum material property for shoe sole. Both the plantar and shoe sole areas were further divided into four regions for model validation, and the Bland鈥揂ltman method was used for consistency analysis between methods. The simulated peak plantar and sole pressure distribution showed good consistency with experimental pressure data, and the prediction errors were all less than 10% during balanced standing with only two exceptions (medial and lateral forefoot regions). Meanwhile, the Bland鈥揂ltman analysis demonstrated a good agreement between the two approaches. The sensitivity analysis suggested that shoe sole with Young鈥檚 modulus of 2.739 MPa presented the greatest consistency with the measured data in our scenario. The established model could be used for investing the complex biomechanical interactions between the foot and sports shoe and optimizing footwear design, after it has been fully validated in the subsequent works under different conditions
    corecore